Fit an lm using standards absorbances
Value
A list containing:
fit, anlmobject fit with the formula.log2_conc ~ .log2_abs, fit using non-outlier standardsqp, the input data
Details
The supplied data.frame must have the following columns:
sample_type. Character. If not 'standard', assumed to be a sample.is_outlier. Boolean. If TRUE, assumed to be outlier and removed from fitting. If FALSE or NA, used for fitting. If unsupplied, will create one with all values set to NA..conc. Numeric. Known concentration of standard..log2_abs. Numeric. The log2 of the absorbances
Examples
absorbances |>
qp_add_std_conc() |>
qp_fit()
#> Warning: `sample_type` contains values other than `standard` and `unknown`
#> ! These values may be ignored downstream!
#> Did not find column `.log2_abs`, calculating.
#> Did not find column `.is_outlier`
#> Running `qp_mark_outliers` with `ignore_outliers = all`
#> $fit
#>
#> Call:
#> stats::lm(formula = .log2_conc ~ .log2_abs, data = fit_data)
#>
#> Coefficients:
#> (Intercept) .log2_abs
#> 2.378 0.850
#>
#>
#> $qp
#> # A tibble: 88 × 8
#> .row .col .abs sample_type index .conc .log2_abs .is_outlier
#> <int> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <lgl>
#> 1 1 1 0.0707 standard 1 0 -3.82 FALSE
#> 2 2 1 0.0786 standard 1 0 -3.67 TRUE
#> 3 3 1 0.0714 standard 1 0 -3.81 FALSE
#> 4 1 2 0.0795 standard 2 0.125 -3.65 FALSE
#> 5 2 2 0.0799 standard 2 0.125 -3.65 FALSE
#> 6 3 2 0.0805 standard 2 0.125 -3.63 FALSE
#> 7 1 3 0.0999 standard 3 0.25 -3.32 FALSE
#> 8 2 3 0.0955 standard 3 0.25 -3.39 FALSE
#> 9 3 3 0.0976 standard 3 0.25 -3.36 FALSE
#> 10 1 4 0.151 standard 4 0.5 -2.72 TRUE
#> # ℹ 78 more rows
#>
