Fit an lm using standards absorbances
Value
A list containing:
fit
, anlm
object fit with the formula.log2_conc ~ .log2_abs
, fit using non-outlier standardsqp
, the input data
Details
The supplied data.frame
must have the following columns:
sample_type
. Character. If not 'standard', assumed to be a sample.is_outlier
. Boolean. If TRUE, assumed to be outlier and removed from fitting. If FALSE or NA, used for fitting. If unsupplied, will create one with all values set to NA..conc
. Numeric. Known concentration of standard..log2_abs
. Numeric. The log2 of the absorbances
Examples
absorbances |>
qp_add_std_conc() |>
qp_fit()
#> Warning: `sample_type` contains values other than `standard` and `unknown`
#> ! These values may be ignored downstream!
#> Did not find column `.log2_abs`, calculating.
#> Did not find column `.is_outlier`
#> Running `qp_mark_outliers` with `ignore_outliers = all`
#> $fit
#>
#> Call:
#> stats::lm(formula = .log2_conc ~ .log2_abs, data = fit_data)
#>
#> Coefficients:
#> (Intercept) .log2_abs
#> 2.378 0.850
#>
#>
#> $qp
#> # A tibble: 88 × 8
#> .row .col .abs sample_type index .conc .log2_abs .is_outlier
#> <int> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <lgl>
#> 1 1 1 0.0707 standard 1 0 -3.82 FALSE
#> 2 2 1 0.0786 standard 1 0 -3.67 TRUE
#> 3 3 1 0.0714 standard 1 0 -3.81 FALSE
#> 4 1 2 0.0795 standard 2 0.125 -3.65 FALSE
#> 5 2 2 0.0799 standard 2 0.125 -3.65 FALSE
#> 6 3 2 0.0805 standard 2 0.125 -3.63 FALSE
#> 7 1 3 0.0999 standard 3 0.25 -3.32 FALSE
#> 8 2 3 0.0955 standard 3 0.25 -3.39 FALSE
#> 9 3 3 0.0976 standard 3 0.25 -3.36 FALSE
#> 10 1 4 0.151 standard 4 0.5 -2.72 TRUE
#> # ℹ 78 more rows
#>