Quantify protein concentration from a MicroBCA assay
Arguments
- x
A
spectramax
,gp
, ordata.frame
object, or path to SPECTRAmax .xls(x)/.txt file.- replicate_orientation
Either 'h' or 'v' - see Details.
- sample_names
Optional character vector of sample names.
- remove_empty
Should wells that have less absorbance than the lowest standard be dropped?
- ignore_outliers
Character. From which group - samples or standards - should outliers be detected and removed?
- standard_scale
Numeric. Known concentrations of standards, in the order they appear.
- n_replicates
Numeric. The number of techinical replicates.
- wavelength
Numeric. The wavelength absorbance was captured.
Details
If x
is a spectramax
, the standards must start in the upper left
corner in the order dictated by standard_scale
. Whether this is from from
left to right or top to bottom can be specified in replicate_orientation
.
Note that replicate_orientation
specified the direction that REPLICATES
lie, NOT the direction the samples flow (which will be perpendicular to
the replicates).
Note: replicate_orientation
, n_replicates
, and wavelength
will
be silently ignored if x
is not a spectramax
or path to a
spectramax
Examples
data <- system.file("extdata", "absorbances.txt", package = "qp")
qp(data, replicate_orientation = "h")
#> Please wait. This will take ~10 seconds.
#> $fit
#>
#> Call:
#> stats::lm(formula = .log2_conc ~ .log2_abs, data = fit_data)
#>
#> Coefficients:
#> (Intercept) .log2_abs
#> 3.358 1.141
#>
#>
#> $qp
#> # A tibble: 36 × 13
#> .row .col .abs sample_type index .conc .is_outlier .mean .log2_abs
#> <int> <dbl> <dbl> <fct> <dbl> <dbl> <lgl> <dbl> <dbl>
#> 1 1 1 0.0686 standard 1 0 FALSE 0.0700 -3.87
#> 2 1 2 0.0717 standard 1 0 FALSE 0.0700 -3.80
#> 3 1 3 0.0698 standard 1 0 FALSE 0.0700 -3.84
#> 4 2 1 0.0825 standard 2 0.125 TRUE 0.0834 -3.60
#> 5 2 2 0.0832 standard 2 0.125 FALSE 0.0834 -3.59
#> 6 2 3 0.0835 standard 2 0.125 FALSE 0.0834 -3.58
#> 7 3 1 0.102 standard 3 0.25 FALSE 0.102 -3.29
#> 8 3 2 0.100 standard 3 0.25 TRUE 0.102 -3.32
#> 9 3 3 0.102 standard 3 0.25 FALSE 0.102 -3.30
#> 10 4 1 0.132 standard 4 0.5 FALSE 0.132 -2.92
#> # ℹ 26 more rows
#> # ℹ 4 more variables: .pred <dbl>, .pred_conc <dbl>, .pred_conc_mean <dbl>,
#> # .sample_name <chr>
#>